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Abstract. We have investigaed the nature of the dynamical behaviour in low autocorrelation 
binary sequences. These models do have a glass vansition To of a purely dynamical naNre. 
Above the @ass transition the dynamics we not fully ergodic and relaxation times diverge like 
a power law T - (T - Tc)-Y with y close to 2. Approaching the glass transition the relxxatian 
slows down, in agreement with the firstader n a t w  of b e  dynamical transition. Below the 
glass vansition the system exhibits aging phenomena. as in disordered spin glasses. We propose 
the aging phenomena as a precise method to determine the glass transition and ifs first-order 
nature. 

1. Introduction 

There has been much interest recently in the field of condensed matter physics concerning 
the study of frustrated models without explicit disorder r1-51. These models (also called 
deterministic models) show a very similar behaviour to spin glasses [6 ] ,  i.e. there exists a 
very large number of metastable configurations where the system remains trapped and it  is 
very difficult to reach the global equilibrium state in a dynamical process starting from a 
random initial configuration. 

The main difference between these frustrated models and spin glasses is that in the case 
of deterministic models the quenched disorder is not present. Because some symmetries 
are preserved in the deterministic model, in some cases it is possible to explicitly construct 
the ground state. This possibility is generally forbidden in disordered systems because no 
symmetry is preserved. Also, in disordered systems, each realization of the randomness 
yields a different ground state, implying that there is much difficulty in devising any kind 
of algorithm to identify the ground state. 

Recently, it has been shown that the application of techniques initially devised for this 
random systems promises to be a powerhl tool in the understanding of the deterministic 
models [I]. In particular, much effort has been devoted recently to the study of the 
Bernasconi model [lo]. This is an optimization problem in which one searches for srrings 
of binary digits with minimal autocorrelation. The high-temperature phase of this model 
has been solved exactly in the particular case of periodic boundary conditions ([l], hereafter 
referred to as paper I). The system shows a static transition to a frozen phase where the 
entropy is nearly zero. In the original Bernasconi model with open boundary conditions 
an exact solution for the high-T phase is still lacking, but some approximations suggest 
that a similar static transition also takes place in that case. This static transition is different 
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from the dynamical transition one observes in a real system. The dynamical transition 
is higher than the static transition and corresponds to the situation in which the system 
remains trapped in metastable configurations. Below this dynamical transition temperature, 
thermal fluctuations are very small and very reminiscent of what happens in real glasses 
[9]. In the context of models without explicit disorder this transition has been called the 
glass transition. Starting a dynamical evolution from the high-temperature region, a large 
enough system is unable to see the static transition because it gets trapped in the metastable 
phase at a higher temperature. For all purposes, it is always this higher temperature transition 
which governs the dynamics. Within the realm of disordered systems this dynamic &ansition 
can be computed using the marginality condition [ll]. This condition corresponds to the 
search for certain saddle points of the free energy (not true maxima as in the static case) 
such that one particular eigenvalue of the stability matrix vanishes (the so-called replicon 
eigenvalue). This condition corresponds to the temperature at which dynamical stability 
disappears. The dynamical transition temperature has been obtained by several authors 
using the dynamic mean-field theory of spin glasses initially studied by Sompolinsky and 
Zippelius for the study of the SK model [12]. In the framework of disordered systems, 
the studies of Kirkpatrick and collaborators on the p-spin Ising models [I31 and the Potts 
glass [I41 have always shown that this dynamical temperature is above that predicted by 
the statics. Recent studies of the off-equilibrium dynamics of the p-spherical spin-glass 
model by Cugliandolo and Kurchan have shown that the energy of the dynamics in the 
low-temperature phase, below the dynamical transition, is higher than that predicted by the 
statics [ 151. As the dynamical transition temperature is approached, the off-equilibrium 
dynamics slows down and aging effects start to appear. Similar aging phenomena have 
been found in the context of random manifolds [16]. 

In some cases the glass transition for the models without disorder can also be predicted 
using the replica approach. A concrete test of all these theoretical results for a deterministic 
model and its disordered version (defined as the disordered model which has the same 
high-T expansion as the deterministic model) has been performed very recently for the 
sine model [2] (hereafter referred to as  paper 11). In this case, the dynamical transition can 
be computed exactly and compared to the numerical results. We stress the fact that this 
dynamical transition, in the context of disordered systems, corresponds to the glass transition 
for the deterministic case. 

The purpose of this work is to show how several numerical techniques in spin glasses can 
be used for the determination of the glass transition temperature for deterministic models. 
Because this glassy transition is, as we have already indicated, purely dynamical, this will 
also be the essence of the techniques we will use. Now the reader will realize that the 
main advantage of the study of deterministic models relies on the fact that one does not 
need to average over different realizations of disorder. Because of the dynamical nature 
of the transition one should average over different initial conditions. Anyway, comparing 
to the spin-glass case, we have eliminated one source of strong fluctuations. In this work 
we wili concentrate on the case of low autocorrelation binary sequences. These models 
have received a lot of attention very recently because they are the simplest prototype of 
ordered systems with a very complex energy landscape; we refer the reader to the different 
works on this subject. Migliorini has performed extensive numerical simulations using the 
tempering method [ZI] and Krauth and Mezard [22] and Krauth and Pluchery [23] have 
applied a modified version of the BKL algorithm (due to Bortz et a1 1241) which allows the 
investigation of dynamical properties for very large times. 

This paper is divided as follows. Section 2 introduces the low autocorrelation models we 
will investigate and presents the main theoretical results in this case. Section 3 is devoted 
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to the study of different thermodynamical quantities during an annealing cooling process 
which clearly displays the existence of the glassy transition. Section 4 is the main nucleus 
of our work, which is the study of off-equilibrium properties of this model and particularly 
of aging. The discontinuous nature of the glass transition will enable us to use this property 
for an accurate prediction of the glass temperature. 

2. Low autocorrelation models 

By low autocorrelation models we denote a large class of deterministic one-dimensional 
models with long-range interactions. In this work we have focused our attention on the 
periodic and open models (so-called depending on the type of boundary conditions). These 
models have their own interest as optimization problems in the field of communication 
systems. Let us suppose there is a one-dimensional chain of king spins [U;; i = I ,  N }  
which can take the values -+I and the following Hamiltonian: 

where the C, are correlation functions which connect spins at distance k .  The case v = 1 
is the problem we are generally interested in but nothing prevents us from considering 
different models for a generic value of U. For the periodic model we have 

i=l 

and in the case of the open model 

i= I 

so, in this case, there is no translational symmetry in the model. 
It was shown by Golay [25] and later by Bernasconi [IO] that one could approximate 

the thermodynamics of the open model by supposing that the different correlation functions 
ck are uncorrelated Gaussian distributed random variables. This is the Golay-Bernasconi 
(GB) approximation and predicts the existence of a phase transition at a low temperature 
where the entropy vanishes. The same conclusion is valid for the periodic model where one 
expects the existence of a phase transition at low temperatures. 

The interested reader can find most of the results of this section for the periodic model 
in paper I. Now we will recall some of the main results obtained in that work. In the case of 
the periodic model it can be shown that for prime values of N of the type (4k+3), k being an 
integer, there exists an explicit ground state of finite global energy (and energy per spin zero 
in the thermodynamic limit because (1) has to be normalized by N). This construction does 
not exist in the open case. This ground state has a very low entropy up to a finite temperature 
where the entropy experiences a sudden jump. This finite temperature is the crystallization 
transition. Starting at zero temperature from the ground-state configuration and slowly 
increasing the temperature, the entropy also increases very slowly (always remaining very 
close to zero). At the crystallization temperature the entropy jumps to a finite value and the 
system enters the high-temperature regime. To account for this situation it is sometimes said 
that the phase space has ‘go[fcourse’-like properties. As regards the dynamical behaviour of 
these models, the existence of a ground state of very low energy is of no relevance because 
we are interested in the behaviour of large systems. In fact, during a usual dynamical 
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relaxation process, the system is unable to find the ground state because this state has very 
low entropy, In this situation, the particular mathematical features of the selected number N 
(prime of the type 4 k t 3  or not) are irrelevant. As has been shown in I ,  the high-temperature 
phase of the periodic model can  be solved exactly. Due to the translational symmetry of 
the model one can write the Hamiltonian in terms of the Fourier-space components 

G Migliorini and F Ritort 

where i stands for the imaginary unit. The Hamiltonian (2) now reads 

__ 
Because 0; are real functions (i.e. B ( p )  = B ( - p ) )  half of the Fourier components 

can be neglected. Writing the Hamiltonian in the Fourier space one can show that only 
certain kind of connected diagrams contribute to the free energy allowing for a Hartree- 
Fock resummation of the full series. In another way one can demonstrate. by introducing in  
equation (4) a generic unitary matrix, that the replica approach can be used to find the free 
energy of the model. In the replica-symmetric approximation one recovers the Hartree-Fock 
resummation. For our purposes it  is important to note that the free energy of the periodic 
model is given by 

1 f = 1 l o g i m r  exp (-p4 - @Lr2)dr - - log(2) - 1 (6) B B 
where the value of $ is determined by the equation 

(7) Jdmr3 exp ( - p r 4  - $r 2 ) dr = r exp (-Br4 - p r Z )  d r  . 

The last condition corresponds to the closure condition 

p=1 

the internal energy is given by 

and the mean values (. .) are evaluated using the effective Hamiltonian 

The integration variables Bp are complex variables and the mean values (. . .) are obtained 
by integrating over the real and imaginary parts of the B,,. 

These expressions are valid for the periodic model down to the temperature at which the 
entropy vanishes, which is T,& - 0.1 (the superscript C denotes the periodic model and 0 
the open case). This result is surprisingly close to that given by the GB approximation. In 
that approximation one obtains the energy and the entropy 

I B 
I + 48 1 + 4 8 '  

e=----- s = g ( 2 )  - 4 log( 1 + 48) + - 
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The entropy vanishes at TRSB - 0.096 43 and the energy at that temperature is close to 
0.0235. We indicate this temperature by the subindex RSB because at this temperature replica 
symmetry is broken. Below TLB the entropy is nearly zero and the energy is constant, a 
situation very similar to that of spin glasses with one step of replica-symmetry breaking 
[8,17]. Obviously the previous expression (6)  is not valid for the open model, for which 
a high-temperature resummation is still lacking. Using the Golay approximation we can 
estimate this transition to be close to TgB - 0.047. 

As we will see in the following sections, the transition T R ~ B  for the periodic and for 
the open model are not the true glass transition. As discussed in the introduction, the 
true glass transition corresponds to the transition where dynamical stability is lost (i.e. the 
temperature given by the marginality condition) and it can be several times larger than 
the corresponding transition given by the statics. This result was already known in spin 
glasses but it was not known that this result also applies in the case of deterministic models. 
The following sections are devoted to the numerical determination of this transition in the 
open and periodic cases. We will also see how off-equilibrium phenomena, and particularly 
the property of aging, yield a very nice and precise way to determine this glass transition 
temperature. Regarding the dynamical behaviour of both models we can advance the case 
that the main conclusions will be the same for the open and the periodic case. Because 
the open model has historically received more attention than the periodic version we will 
present more dynamical results in the former case. 

3. A first determination of the glass transition 

The main property of the glass transition in low autocorrelation models regards the first-order 
nature of this dynamical transition. From the thermodynamic point of view this transition is 
second order. So, for instance, the energy and the entropy are continuous while the specific 
heat experiences a jump. Because the transition is purely dynamical, this implies a transition 
for the correlation and response functions. In this section we will explore the behaviour of 
thermodynamic quantities leaving the discontinuous feature of the order parameter to the 
next section. For the periodic and open models we have made the same kinds of studies. In 
fact, we have discovered that they are strongly similar except for the fact that the periodic 
model is solved analytically in the high-T phase and displays an explicit ground state for 
chain lengths N such that N is prime and of the type 4k + 3, k being an integer. 

Starting from a random initial configuration in the high-temperature region, we have 
progressively decreased the temperature using a Monte Carlo annealing. We have simulated 
several sizes up to N = 1000 (because it is a long-range problem the number of bit 
operations in a Monte Carlo updating procedure grows very quickly with the size of the 
system). We have also tested that finite-size corrections are negligible and different initial 
conditions give the same result. As was pointed out in the introduction, we now have only 
one realization of disorder on which we have to do simulations. We have computed the 
main thermodynamical observables such as the energy, magnetization and their associated 
dissipative quantities like specific heat and magnetic susceptibility. The behaviour of the 
energy is shown in figures 1 and 2 for the periodic and open model, respectively. The 
energy decreases down to a certain temperature where it remains constant. This is very 
similar to what happens in the random energy model ( R E M )  [SI. The broken curve in 
figures 1 and 2 corresponds to the GB approximation and the full curve (only for the periodic 
model) corresponds to the correct high-temperature prediction (6) which is in agreement 
with the data. As has already been mentioned, the glass transition is higher than the static 
transition (close to 0.1 in the periodic model). Figure 1 shows where the entropy of the 
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0 0.4 0.8 1 .2  1.8 2 

T 

Figure 1. Energy of the periodic model versus temperature. The full curve is the high- 
temperature result (6). The broken curve is the CB approximation. Simulation results me 
for N = 100 

0.4 L I 

Figure 2. Energy of the open model versus tempemlure. The full cume is the CB approximntion. 
Simulation resulfs me for N = 500 (0) 3nd N = 1000 (x )  

high-temperature expression of (6) vanishes (this is where the energy (9) becomes constant 
as a function of the temperature). Curiously it does so at a temperature very close to that 
at which the entropy vanishes in  the GB approximation. We have no explanation for this 
result, but it could be a pure accident. If this were also true in the opened case one would be 
tempted to state that the GB approximation is enough to predict the static transition. Figures 
3 and 4 show the behaviour of the specific heat for the periodic and open model, respectively. 
The specific heat has been computed by measuring the fluctuations of the energy 

c = B 2 N ( ( H 2 ) -  (H) ' )  

where the factor N in the expression arises from the appropiate normalization of the tem- 
perature. Also in these cases we plot the results for the GB approximation and, for the case 
of the periodic model, %'e also plot the high-temperature prediction (6). In both cases we 



Behaviour of low autocorrelation models 7675 
0.3 

C 

0.25 

0.2 

0.15 

0.1 

0.05 

0 
0 0.4 0.6 1.2 1.6 2 

T 

Figure 3. Specific heat of the periodic model versus tempenture. The full C U W ~  is the high- 
temperature result (6). The broken curve is the GB approximation. Simulation results me far 
N = 100 (0) and N = 500 (x). 

p ~ , , , . . , , , . , , . , . , . . .  

0 0.4 0.8 1.2 1.6 2 
0 5  
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Figure 4. Specific heat of the open model versus temperature. The full curve is the CB 
approximation. Simulation resuits are far N = 100 (0) md N = 500 (x). 

observe a discontinuous jump of the specific heat. It appears at a temperature T: - 0.45 for 
the periodic model and T: - 0.2 for the open case. We have to note that this energy and 
specific heat in the low-T phase are purely dynamical. Anyway, they satisfy fluctuation- 
dissipation theorems like the relation C = ae /aT ,  where C is the specific heat and e is the 
internal energy. 

We have also measured the magnetization and its associated dissipative quantity (the 
magnetic susceptibility) fluctuations. The global magnetization is zero above 'f~ and below 
this temperature remains stacked to a certain small non-zero value (of the order of the 
standard mean deviation l / f i ) .  Valuable information can be obtained from its fluctuations 
like the linear susceptibility and the Binder parameter. If P(M)  is the probability distribution 
of the magnetization, we expect it will be a Gaussian at very large temperatures and become 
more and more flattened as the glass ransition is approached. We are going to show that this 
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really is the case and that fluctuations are very large even if we stay at high temperatures. 
In other words, the linear susceptibility and the Binder parameter are the variance and the 
curtosis of the probability distribution P ( M ) .  The linear susceptibility is given by 

(13) 
where M is the global magnetization and we recall the fact that one factor N has been 
absorbed in the temperature in order to have an appropriate thermodynamic limit. The 
Binder parameter [20] is given by 

G Migliorini and F Riforf 

x = B ( ( W  - (M?) 

Now we would like to approximately compute this quantity in the high-T phase above 
the glass transition. From (5) we observe that the Hamiltonian is the sum of 1 N  Fourier 
components B ( p ) .  We can suppose that these Fourier components are, at least, independent 
in the high-T phase (in some sense this is the original idea of Golay for r e s u m i n g  the 
high-T series). One can soon realize that this approximation has to fail because the total 
number of Fourier components is too large (it diverges with N).  But this is the easiest 
approximation one can do. In order to reach the correct expression it should be necessary 
to solve the low autocorrelation models in a magnetic field. Within this approximation and 
using the Hamiltonian (5) we observe that the zero-momentum term IB(0)l4 corresponds 
to the fourth power of the magnetization. The only difference between the magnetization 
and B,, is that these last Fourier components are complex while the magnetization is real. 
According to (IO) the effective probability distribution of the magnetization is given by 

P(M) - exp (-BM' - /AM?). (15) 
We immediately observe that only at infinite temperature will the probability distribution 

be a Gaussian, and at finite 0 non-Gaussian corrections can be very strong (the same 
discussion is valid for any Fourier component Bp) .  This result was observed numerically 
by Migliorini studying the local-field distribution [21] in the open model. Using this 
approximation and (8) for the periodic model one gets 

X = B  (16) 

2 \ 

0 
0 0.4 1.2 1 .e 2 

T 

Flgum 5. Magnetic susceptibility of he periodic model versus lemperature. The full curve is 
the approximation (16). Simul3tion resulk are for N = i W  (0) m d  N = 500 (x) .  
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Figure 6. Magnetic susceptibility of the open model Venus tempemtux. Simulation ~rsultr x e  
for N = 500 (0) and N = IO00 (x). 
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Figure 7. Binder parameter of the penodic and open models Venus temperature. The full curve 
is the approximate high-tempemure result to the periodic case (17). Data is shown for N = 100 
in the periodic model (D) and N = 500 in the open case (x), 

for the linear susceptibility of the periodic model. Figures 5 and 6 show the linear 
susceptibility obtained during an annealing process. Figure 5 also shows the prediction (16) 
for the periodic model. The values obtained for the glass transition from the discontinuity 
of the linear susceptibility agree with those obtained measuring the specific heat (figures 3 
and 4). 

In the case of the Binder parameter we use (9) which we can obtain in terms of the 
internal energy (now one has to be a little bit careful and realize. that the integral of the 
fourth power of the magnetization, which is a real variable, over the probability distribution 
(15) is times the integral of the fourth power of any complex Fourier component B, over 
the effective Hamiltonian (10)). One gets the result 

(17) 3 g = ~ ( l  - e ) .  
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We show in figure 7 the behaviour of the Binder parameter associated with the 
magnetization for the periodic model (Monte Carlo results are also shown for the open case). 
It is shown up to T = 2 (five times the predicted glass temperature of the periodic model), 
For very large temperatures the Binder parameter should vanish because the magnetization 
distribution becomes a Gaussian. In our case it decays very slowly to zero, which indicates 
that well above the glass temperature fluctuations in the magnetization are large. Also from 
figure 7 we can observe a jump for the Binder parameter at the glass transition to a value 
close to 1. One comment about the high value of g above TG is now appropriate. This large 
value of the curtosis parameter means that the probability distribution of the magnetization 
is far from being a Gaussian. It is a'symmetric distribution very flat close to M = 0 and 
with possibly two peaks distributed symmetrically. As we will see in the next section, this 
result has strong implications for the dynamics. We expect that well above To the spin-spin 
correlation function (u(to)n(t)) decays to zero very quickly but the system can preserve a 
celtain memory of the configuration at time ro. In fact, if the P(M) is so much flattened 
around M = 0. the system can need a very large time to reach configurations completely 
uncorrelated from the memorized configuration at lo. 

Let us summarize the results of this section. Performing annealings, starting from large 
temperatures down to the low-T region, we observe a glacs transition where the energy 
freezes and fluctuations vanish. This temperature is several times larger than that predicted 
by the statics and this is related to the peculiar structure of the high-energy metastable states 
which the systems explore during the relaxation. More concretely, we have learned that 
the glassy temperature occurs at T: rr 0.45 for the periodic model and T: N 0.2 for the 
open case, In the next section we will confirm these results by studying the off-equilibrium 
dynamics of these models. In particular. aging phenomena will appear as a good method 
for determining the glass transition. 

4. Aging a n d  the first-order nature of the dynamical transition 

As we said in the last section this transition is of first-order nature in the dynamical order 
parameter. In principle, the dynamics are described by the two-time correlation functions 
C(s, fz) and the response functions G(t1, 12),  They are defined as usual by 

where (. . .) is the usual time average over different noise realizations in the dynamics and 
h(l2) is the magnetic field applied to the system at the time r?. We have performed discrete 
Monte Carlo dynamics which we expect to give similar results as well as a usual Langevin 
dynamical process. 

In the high-temperature regime, above the glass transition, we expect that the correlation 
and the response functions are related to each other by the fuctuation-dissipation theorem. 
Also in this high-T region the correlation and the response functions satisfy the time- 
homogeneity hypothesis, i.e. the functions C(rl,rz) and G ( t l ,  t ~ )  only depend on the time 
difference fl - f?. Both functions decay very quickly in time. 

Below the glass transition the time behaviour of the correlation and response function 
change drastically and, for instance, time correlations decay very slowly in time. In this 
low-T regime the time-homogeneity hypothesis is lost and strong aging effects start to 
appear. Then the decay of the correlation functions depends on the previous history of 
the system. More concretely, i t  depends on the time tl at which the spin configuration is 
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memorized (in the case of the correlation functions) or on the time t2 at which the magnetic 
field is switched o f f  (in the case of the response function). 

For reasons of simplicity we have focused our research on the two-time correlation 
function (one could also perform aging experiments measuring the remanent magnetization). 
In this case we have measured the time-time correlation function between the spins 
configuration at the waiting time tw and the configuration at the next time tw + f ,  

Above the glass transition temperature we expect time homogeneity to apply (this means 
that C( tw ,  tw+r) only depends on t )  and time correlation functions should decay very quickly 
to zero. The following condition holds: 

lim C(tw, 2rw) = 0. (21) 
k f m  

Just below TG the correlation function decays very slowly in time to a finite value q1 
This finite value q1 is positive and smaller than the static EdwardFAnderson order parameter 
at the static transition point. This value q1 is zero above To and is very close to I just 
below TG and increases as the temperature decreases (linearly with T at low temperatures). 
We have to call readers attention to the fact that this value is physically related to the 
local order parameter associated with the metastable states and this is smaller than the local 
overlap associated with the true equilibrium configurations (the static Edwards-Anderson 
order parameter). The procedure for determining the value of q1 has been applied recently to 
a particular deterministic model (see 11) and corresponds to the replica order parameter within 
the same block as the one-step replica of replica-symmetry breaking. This is evaluated at the 
dynamical transition point where the free energy is maximized according to the marginality 
condition. More precisely, we can write. (for an infinite system) 

lim C(&, 2tw) = q1 (22) 
tw-Kc 

where q,  depends on the temperature For low autocorrelation models we know that the 
value of q1 is very close to 1 (for instance, this is the greatest difference between p-spin 
glasses 1261 or Potts glasses [27] and low autocorrelation models; the last ones show a very 
large discontinuity in the value of 41). Because the value of q1 jumps from zero above TG 
to a finite value below To the transition is of a discontinuous type. Before showing our 
dynamical results in the case of low autocorrelation binary sequences we would like to note 
that, as regards dynamical experiments, deterministic models are much more suited than 
disordered models. Because our model is ordered, we do not need to save the realization of 
the random couplings. The number of random couplings, in the case of a long-range model, 
can be very large and this sets a limit on the maximum size one is able to memorize in the 
computer. The major part of the numerical results we will show correspond to N = 5000 
in both models (open as well as in the periodic case). 

The existence of aging is one of the most outstanding features of spin glasses [28]. Now 
we are going to show that low autocorrelation models also exhibit these phenomena just 
below the glass hansition. Because the results we have obtained for the periodic and the 
open case are very similar, in some cases we will present the results for just the open case. 
Figure 8 shows the correlation function (7.0) for the open model, for different values of the 
waiting time above the glass transition TG (as estimated in the previous section). The data 
in this case corresponds to a temperature T = 0.45. This figure shows that above the glass 
transition the aging effects are absent (i.e. the correlation functions do not depend on the 
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Figure 8. C(t,. t t tw) for the open model for different values of tw above the glass transition 
at 7 = 0.45. The sire is N = 5000. 
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t 

Figure 9. C(rw, t + h) for be open model for different values oft, bdow the glass tnnsitlon 
at 7 = 0.1. The sire is N = 5000. 

value of rw). Also, all correlation functions decay very quickly with the time. Surprisingly 
(as shown in figure 8) they do not always decay to zero. In some cases, they decay to a 
small finite value (for the suspicious reader we will note that this value is larger than the 
standard deviation l / f i ) .  This means that, well above the glass transition, the system 
preserves a small temporal correlation with previous configurations. As discussed in fie 
previous section, this is strongly related to the non-Gaussian nature of the fluctuations (for 
instance, this was shown in the case of the magnetization). This behaviour is far from being 
paramagnetic. It is not clear to us what is the real dynamical nature of this high-T region.. 

As soon as we go below TG the dynamics slow down dramatically. The system remains 
trapped in metastable states and it takes a very long time for the system to overcome the 
barriers and explore new configurations. This is seen clearly in the results of figure 9 where 
we show the correlation function below the glass transition at T = 0.1 for one realization of 
the noise for the open model. Aging effects are present and we expect correlation functions 
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to depend mainly on the ratio t /tw, for large enough values of tw. Some comments are now 
in order. As shown in figure 9, the correlation function stays very close to 1 during a time 
of the order of lo4 Monte Carlo steps for all different waiting times. This is because for 
enough low temperatures the system is able to surmount only a few numbers of states and 
the shape of the correlation function is strongly dependent on the noise realization. To get 
smooth correlation functions one should average over a very large number of trajectories 
and this demands a lot of computer time. From these considerations it emerges that a scaling 
law of the type 

C(tw, t + tw) - f (tit,") (23) 
is very difficult to observe in a small number of decades of time. This scaling law has been 
obtained by Bouchaud in his phenomenological approach to the off-equilibrium dynamics 
[29]. Cugliandolo and Kurchan [15] have shown explicitly that this is indeed a solution of 
the off-equilibrium equations in case of the p-spin spherical spin-glass model and the Pot& 
model 1301. These models do have a spin-glass phase with one step of replica-symmetry 
breaking. It is reasonable to suppose that the scaling law (23) also applies in the case of 
low autocorrelation models for which a REM-like transition describes the low-T behaviour 
well. We should also note that the dynamical behaviour we are observing in these models is 
strongly different from the dynamical relaxation of the SK model 1311 or short-range king 
spin glasses [32]. In this case, one does not have a first-order dynamical transition and the 
free-energy landscape i s  not so rough. The system is not trapped in the metastable states 
and correlation functions decay to zero smoothly without apparent jumps [19]. When a 
strong metastability is present (as in low autocorreIation models) new numerical techniques 
like those recently developed by Krauth and Pluchery [23] and Krauth and Mezard [22] 
are very useful. If one wants to  observe smooth aging over a reasonable time scale, it is 
mandatory to go to higher temperatures. Precisely at the glass temperature we expect that 
the system will display nice aging and the scaling law (23) will be satisfied for enough 
large sizes. This is shown in figure 10, where we have measured the aging at a temperature 

1 1 0  100 1000 

t 

Figure 10. C&, t+t,) for the open model for different values oft, close to the glass transition 
(To - 0.19). The inset shows the scaling law (23). The size is N = 10000. The symbols 
correspond to diffezent values of tw: 30 (t). 100 (0). 3W (x). 1000 (A)  and 3W0 (0). 
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Figurc 11. C(rw, U,) for the periodic model For different values of rw = 30. 100.300 and 1040 
as a function of the tempemure 
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Figure 12. C(r,, Zr,) for the open model for different values of I, = 30, 100.300. 1000 and 
3000 as a function of the temperature. 

TO - 0.19 for the open model and a very large size N = 10000. The inset of figure 10 
shows the scaling law (23). 

Now we want to show how aging allows for a nice confirmation of the first-order 
nature of the glass transition. This is one of the main results of this work. Because the 
nature of this glass transition is purely dynamical we can use the relations (21) and (22) in 
order to find the temperature at which the discontinuity of the order parameter appears. A 
similar technique could be used by coupling two replicas, as has been done in case of the 
p-spherical spin-glass model [33]. Nevertheless, we think that our dynamical technique is 
more direct because we do not need the introduction of an extra coupling parameter in the 
model. 

We have computed the correlation function for different waiting times r, and also 
different temperatures. Then, for each temperature. we computed C(t , ,  Zf,), averaging the 
correlation function in a logarithmic scale. We proceeded in this way in order to get smooth 
values of the correlation C(r,, Zt,) as a function of the temperature and the waiting time. 
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We have done this numerical analysis for different values oft, = 100,300 and 1000 in the 
periodic model and t ,  = 100,300, 1000 and 3000 for the open model. Figures 1 I and 12 
show the results for the periodic and open model, respectively. From this data we can clearly 
see the discontinuity because the predicted value of q1 is very close to 1 just below TG, 

In order to obtain TG we have performed a usual finite-time scaling analysis. To this 
end we have measured the relaxation curves above the glass transition and also above the 
temperature at which finite-size effects are negligible (approximately T = 0.25 for the open 
model and T = 0.55 in the periodic case). Correlation functions decay exponentially and 
one can estimate the relaxation time r as a function of T .  In this range of temperatures we 
expect the correlation time will diverge as a power-law singularity of the type 

T - (T - T&Y (24) 
where y is a dynamical exponent. We note that this kind of divergence is also typical of 
disordered systems with long- or short-range interactions. In the case of frustrated models 
without disorder the situation can be different depending on the range of the interaction. 
Low autocorrelation models are of the long-range type. It is possible that for more realistic 
models of glasses the dynamics will be much more complex and very different relaxation 
behaviours, like the Arrhenius or the Vogel-Fulcher law, could take place. Now we want to 
observe that usual critical dynamics works well in the case of low autocorrelation models. 
This is not sulprising if (as we have seen in this work) glasses and spin glasses do have so 
much in common [34]. We have fitted the correlation functions in the high-T regime with 
a scaling law of the type 

c( t )  - f @ / 5 )  (25) 
where r is given in (24). The scaling behaviour is shown in figures 13 and 14 for the open 
model and the periodic model, respectively. Good fits are obtained with TG - 0.21 i: 0.02 
and y - 2 f 0.5 for the open model and TG - 0.43 f 0.2 and y - 2 f 0.5 for the 
periodic model. The scaling function f(t/s) is nearly an exponential in both cases. The 
exponent y is the equivalent of the product of exponents z v  for the usual critical dynamics 
and it is certainly much lower than known values in realistic glasses (typically these are of 
the order of 10, see [34]). As we have already indicated, low autocorrelation models are 

4 

0.8 

0.6 

0.4 

” 
0.01 0.1 1 10 100 

t {T-0.43)* 

Figure 13. Finite-time swling (25) for lhe periodic case Good scaling is obtained with 
Tc - 0.43 f 0.02 and y - 2. 
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Figure 14. 
T ,  - 0.21 & 0.02 and y - 2. 

Finite-time scaling (25) for the open m e .  Good scaling is obtained with 

long-range models. Realistic glasses are not of the long-range type and it could well be 
that the exponent y increases as the dimensionality decreases. This happens in the case of 
king spin glasses where the product zu ranges from 2 in mean-field theory to 6 in three 
dimensions 1351 (in the case there is a true phase transition [36]). 

5. Conclusions 

Low autoconelation models display a dynamical behaviour very similar to disordered spin 
glasses. The reason for this similarity is that these models (and more generally, glasses) do 
have a broad distribution of higher free-energy metastable states, as happens in the case of 
spin glasses [7].  

The feeling which emerges from recent studies by several groups is that deterministic 
models display a glassy behaviour of a purely dynamical nature. This glassy behaviour 
seems to be associated with spin-glass models with one step of replica-symmetry breaking 
[17]. In the case of models with an infinite number of breakings like the SK model 1181 the 
situation is different [191. 

We have also seen that the open case and the periodic case behave very similarly. We 
have studied the relaxation of magnitudes like the internal energy, specific heat and magnetic 
susceptibility. More interestingly, the Binder parameter associated with the magnetization 
has a non-Gaussian shape even for very large temperatures above the glass transition. 
This result should very probably also apply for any other Fourier component Bp of the 
configuration of the spins. 

According to this result we have seen that well above the glass transition the dynamical 
correlation functions decay exponentially fast to a small non-zero value. The system is not 
fully ergodic because it  has some memory about the previous configurations it has visited. 
We have given an explanation of this fact but it remains unsolved as to what the real 
nature of this high-T phase is. We want to stress that the high-T phase, not being fully 
ergodic, makes the real nature of this dynamical phase transition unclear. It seems purely 
first-order but we think it is more complex than the glass transition found in the case of 
other deterministic models [2 ,5 ]  or spin glasses (i.e. models with an exact solution at one 



Behaviour of low autocorrelation models 7685 

step of replica-symmetry breaking). 
Above the glass transition temperature finite-time scaling analysis has revealed a good 

technique in order to locate the transition and the dynamical exponents. For the open 
and periodic models we obtain the equivalent of the product exponents zv of the critical 
dynamical theory. Values close to 2 are obtained. Compared with experimental values 
obtained in the case of real glasses, these are small, but this could be an artifact of the 
long-range interactions of the low autocorrelation models. 

We have also investigated the dynamics below the glass transition, where aging 
phenomena are present. This is one of the main features in spin glasses. At the glass 
transition, where the effect of the traps is not very strong, we have found that the scaling 
law (23) is well reproduced. 

We conclude by saying that the techniques developed in this work are very general 
and should be applicable to a large variety of systems where disorder is not present. In 
particular, we think that the behaviour of c(tw. 2tw) as a function of temperature is well 
suited in order to characterize the transition. It remains to be understood to what extent 
the results obtained in this work are generic for real glasses and to what extent short-range 
interactions can modify the main conclusions of this work. 
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