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Abstract. We have investigated the nature of the dynamical behaviour in low autacorrelation
binary sequences. These models do have a glass transition Tg of a purely dynamical nature,
Above the glass transition the dynamics are not fully ergodic and relaxation times diverge like
apower law v ~ (T — T}~ with y close to 2, Approaching the plass transition the relaxation
slows down, in agreement with the first-order nature of the dynamical transition. Below the
glass transition the system exhibits aging phenomena, as in disordered spin glasses, We propose
the aging phenomena as a precise method to determine the glass transition and its first-order
nature.

1. Introduction

There has been much interest recently in the field of condensed matter physics concerning
the study of frustrated models without explicit disorder [1-5]. These models (also called
deterministic models) show a very similar behaviour to spin glasses [6], i.e. there exists a
very large number of metastable configurations where the system remains trapped and it is
very difficult to reach the global equilibrium state in a dynamical process starting from a
random initial configuration.

The main difference between these frustrated models and spin glasses is that in the case
of deterministic models the quenched disorder is not present. Because some symmetries
are preserved in the deterministic model, in some cases it is possible to explicitly construct
the ground state. This possibility is generally forbidden in disordered systems because no
symmetry is preserved. Also, in disordered systems, each realization of the randomness
yields a different ground state, implying that there is much difficulty in devising any kind
of algorithm to identify the ground state.

Recently, it has been shown that the application of technigues initially devised for this
random systems promises to be a powerful tool in the understanding of the deterministic
models [1]. In particular, much effort has been devoted recently to the study of the
Bernasconi model [10]. This is an optimization problem in which one searches for strings
of binary digits with minimal autocorrelation, The high-temperature phase of this model
has been solved exactly in the particular case of periodic boundary conditions ([1], hereafter
referred to as paper I). The system shows a static transition to a frozen phase where the
entropy is nearly zero. In the original Bernasconi model with open boundary conditions
an exact solution for the high-7 phase is still lacking, but some approximations suggest
that a similar static transition also takes place in that case. This static transition is differant
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from the dynamical transition one cbserves in a real system. The dynamical transition
is higher than the static transition and corresponds to the situation in which the system
remains trapped in metastable configurations. Below this dynamical transition temperature,
thermal fluctuations are very small and very reminiscent of what happens in real glasses
[9]. In the context of models without explicit disorder this transition has been called the
glass transition. Starting a dynamical evolution from the high-temperature region, a large
enough system is unable to see the static transition because it gets trapped in the metastable
phase at a higher temperature. For all purposes, it is always this higher temperature transition
which governs the dynamics. Within the realm of disordered systems this dynamic transition
can be computed using the marginality condition [11]. This condition corresponds to the
search for certain saddle points of the free energy (not true maxima as in the static case)
such that one particular eigenvalue of the stability matrix vanishes (the so-called replicon
eigenvalue). This condition corresponds to the temperature at which dynamical stability
disappears. The dynamical teansition temperature has been obtained by several authors
using the dynamic mean-field theory of spin glasses initially studied by Sompolinsky and
Zippelius for the study of the SK model [12]. In the framework of disordered systems,
the studies of Kirkpatrick and collaborators on the p-spin Ising models [13] and the Potts
glass [14] have always shown that this dynamical temperature is above that predicted by
the statics. Recent studies of the off-equilibrium dynamics of the p-spherical spin-glass
model by Cugliandolo and Kurchan have shown that the energy of the dynamics in the
low-temperature phase, below the dynamical transition, is higher than that predicted by the
statics [15]. As the dynamical transition temperature is approached, the off-equilibrium
dynamics slows down and aging effects stari to appear. Similar aging phenomena have
been found in the context of random manifolds [16].

In some cases the glass transition for the models without disorder can also be predicted
using the replica approach. A concrete test of all these theoretical results for a deterministic
mode]l and its disordered version {(defined as the disordered model which has the same
high-T' expansion as the deterministic model) has been performed very recently for the
sine model [2] (hereafter referred to as paper I). In this case, the dynamical transition can
be computed exactly and compared to the numerical results. We stress the fact that this
dynamical transition, in the context of disordered systems, corresponds to the glass transition
for the deterministic case.

The purpose of this work is to show how several numericat techniques in spin glasses can
be used for the determination of the glass transition temperature for deterministic models.
Because this glassy transition is, as we have already indicated, purely dynamical, this will
also be the essence of the techniques we will use. Now the reader will realize that the
main advantage of the study of deterministic models relies on the fact that one does not
need to average over different realizations of disorder. Because of the dynamical nature
of the transition one should average over different initial conditions. Anyway, comparing
to the spin-giass case, we have eliminated one source of strong fluctuations. In this work
we wili concentrate on the case of low autocorrelation binary sequences, These models
have received a lot of attention very recently because they are the simplest prototype of
ordered systems with a very complex energy landscape; we refer the reader to the different
works on this subject. Migliorini has performed extensive numerical simulations using the
tempering method [21] and Krauth and Mezard [22] and Krauth and Pluchery [23] have
applied a modified version of the BKL algorithm (due to Bortz et al [24]) which allows the
investigation of dynamical properties for very large times.

This paper is divided as follows. Section 2 introduces the low autocorrelation models we
will investigate and presents the main theoretical results in this case. Section 3 is devoted
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to the study of different thermodynamical guantities during an annealing cooling process
which clearly displays the existence of the glassy transition. Section 4 is the main nucleus
of our work, which is the study of off-equilibrium properties of this model and particularly
of aging. The discontinuous nature of the glass transition will enable us to use this property
for an accurate prediction of the glass temperature.

2. Low autocorrelation models

By low autocorrelation models we denote a large class of deterministic one-dimensional
models with long-range interactions. In this work we have focused our attention on the
periodic and open models (so-called depending on the type of boundary conditions). These
models have theilr own interest as optimization problems in the field of communication
systems. Let us suppose there is a one-dimensional chain of Ising spins [oy;i = 1, N}
which can take the values +1 and the following Hamiltonian:

1 N
H=—-Z cy (1)
Nk:i!

where the C; are correlation functions which connect spins at distance k. The case v = |
is the problem we are generally interested in but nothing prevents us from considering
different models for a generic value of v. For the periodic model we have

N
G = ZC":'CTEM @
i=l
and in the case of the open model
N—k
Cr = Z Gi0i+k 3)
=i

50, in this case, there is no translational symmetry in the model.

It was shown by Golay [25] and later by Bernasceni [10} that one could approximate
the thermodynamics of the open model by supposing that the different correlation functions
. are uncorrelated Gaussian distributed random variables. This is the Golay-Bernasconi
(GB) approximation and predicts the existence of a phase transition at a low temperature
where the entropy vanishes. The same conclusion is valid for the periodic model where one
expects the existence of a phase transition at low temperatures.

The interested reader can find most of the results of this section for the periodic model
in paper 1. Now we will recall some of the main results obtained in that work. In the case of
the periodic model it can be shown that for prime values of N of the type (4%+43), k being an
integer, there exists an explicit ground state of finite global energy (and energy per spin zero
in the thermodynamic limit because (1) has to be normalized by A). This construction does
not exist in the open case. This ground state has a very low entropy up to a finite temperature
where the entropy experiences a sudden jump. This finite temperature is the crystailization
transition. Starting at zero temperature from the ground-state configuration and slowly
increasing the temperature, the entropy also increases very slowly (always remaining very
close to zero). At the crystallization temperature the entropy jumps to a finite value and the
system enters the high-temperature regime. To account for this situation it is sometimes said
that the phase space has ‘golf course’-like properties. As regards the dynamical behaviour of
these models, the existence of a ground state of very low energy is of no relevance because
we are interested in the behaviour of larse systems. In fact, during a usual dynamical
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relaxation process, the system is unable to find the ground state because this state has very
low entropy. In this sttuation, the particular mathematical features of the selected number N
{prime of the type 4k+3 or not) are irrelevant. As has been shown in 1, the high-temperature
phase of the periodic model can be solved exactly. Due to the translational symmetry of
the model one can write the Hamiltonian in terms of the Fourier-space components

B(p) = Ze (2 JP) @)

where i stands for the imaginary unit. The Hamiltonian (2} now reads
o N2

Z IB(p)I*. (5)

Because o; are real functions (i.e. B{p) = B(—p)) half of the Fourier components
can be neglected. Writing the Hamiltonian in the Fourier space one can show that only
certain kind of connected diagrams contribute to the free energy allowing for a Hartree—
Fock resummation of the full series. In another way cne can demonstrate, by introducing in
equation (4) a generic unitary matrix, that the replica approach can be used to find the free
energy of the model, In the replica-symmetric approximation one recovers the Hartree-Fock
resummation. For our purposes it is important to note that the free energy of the periodic
model is given by

I b 1
f= 3 ]ogf rexp(=gr* — ur¥)dr - i log(2) — 1 (6)
0
where the value of g is determined by the eguation
o0 oo
f 3 exp(=grt— urA)dr = f r exp(—Br — uri)dr. (7)
0 0
The last condition corresponds to the closure condition
N2
B =1 ®
p=1
the internal energy is given by
8 ﬂ T
= Z (1B51*) )
and the mean values {-- -} are evaluated using the effective Hamiltonian
HUB) = —By_|1Bl" —u B, (10)
p p

The integration variables B, are complex variables and the mean values (-- ) are obtained
by integrating over the real and imaginary parts of the B,.

These expressions are valid for the periodic model down to the temperature at which the
entropy vanishes, which is Tz ~ 0.1 (the superscript C denotes the periodic model and O
the open case). This result is surprisingly close to that given by the GB approximation. In
that approximation one obtains the energy and the entropy

! B

— oo 1
Y s =1og(2) — 7 log(1 +48) + Tt

(in
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The entropy vanishes at Trsg ~ 0.096 43 and the energy at that temperature is close to
0.0235. We indicate this temperature by the subindex RSB because at this temperature replica
symmetry is broken. Below T,{:SB the entropy is nearly zero and the energy is constant, a
situation very similar to that of spin glasses with one step of replica-symmetry breaking
[8,17). Obviously the previous expression (6) is not valid for the open model, for which
a high-temperature resurnmation js still lacking. Using the Golay approximation we can
estimate this transition to be close to Tigg ~ 0.047.

As we will see in the following sections, the transition Trsgp for the periodic and for
the open model are not the true glass transition. As discussed in the introduction, the
true glass transition corresponds to the transition where dynamical stability is lost (i.e. the
temperature given by the marginality condition} and it can be several times larger than
the corresponding transition given by the statics. This result was already known in spin
glasses but it was not known that this result also applies in the case of deterministic models.
The following sections are devoted to the numerical determination of this transition in the
open and pericdic cases. We will also see how off-equilibrium phenomena, and particuiarly
the property of aging, vield a very nice and precise way to determine this glass transition
temperature. Regarding the dynamical behaviour of both models we can advance the case
that the main conclusions will be the same for the open and the periodic case. Because
the open model has historically received more attention than the periodic version we will
present more dynamical results in the former case.

3. A first determination of the glass transition

The main property of the glass transition in low autocorrelation models regards the first-order
nature of this dynamical transition. From the thermodynamic point of view this transition is
second order. So, for instance, the energy and the entropy are continuous while the specific
heat experiences a jump. Because the transition is purely dynamical, this implies a transition
for the correlation and response functions. In this section we will explore the behaviour of
thermodynamic quantities leaving the discontinuous feature of the order parameter to the
next section. For the periodic and open models we have made the same kinds of studies. In
fact, we have discovered that they are strongly similar except for the fact that the periodic
model is solved analytically in the high-T phase and displays an explicit ground state for
chain lengths & such that & is prime and of the type 4k + 3, & being an integer.

Starting from a random initial configuration in the high-temperature region, we have
progressively decreased the temperature using a Monte Carlo annealing. We have simulated
several sizes up to N = 1000 (because it is a long-range problem the number of bit
operations in a Monte Carlo updating procedure grows very quickly with the size of the
system). We have also tested that finite-size corrections are negligible and different initia)
conditions give the same result. As was pointed out in the introduction, we now have only
one realization of disorder on which we bave to do simulations. We have computed the
main thermodynamical observables such as the epergy, magnetization and their associated
dissipative quantities like specific heat and magnetic susceptibility. The behaviour of the
energy is shown in figures 1 and 2 for the periodic and open model, respectively. The
energy decreases down to a certain temperature where it remains constant. This is very
similar to what happens in the random energy model (REM) [3]. The broken curve in
figures 1 and 2 corresponds to the GB approximation and the full curve {only for the periodic
model) corresponds to the correct high-temperature prediction {6) which is in agreement
with the data. As has already been mentioned, the glass transition is higher than the static
iransition {close to 0.1 in the periodic model). Figure 1 shows where the entropy of the



7674 G Migliorini and F Ritort

0.4

0.32

024

0.16

0.08

Figure 1. Encrgy of the periodic model versus temperature, The full curve is the high-
temperature result {6). The broken curve is the GB approximation. Simulation results are
for ¥ = 100

0.4

0.1 buwmnd

Figure 2. Energy of the open model versus temperature, The full curve is the GB approximation,
Simulation results are for ¥V = 500 (O) and N = 1000 (x)

high-temperature expression of (6) vanishes (this is where the energy (9) becomes constant
as a function of the temperature). Curiously it does so at a temperature very close to that
at which the entropy vanishes in the GB approximation. We have no explanation for this
result, but it could be a pure accident. If this were also true in the opened case one would be
tempted to state that the GB approximation is enongh to predict the static transition. Figures
3 and 4 show the behaviour of the specific heat for the periodic and open model, respectively.
The specific heat has been computed by measuring the fluctuations of the energy

¢ = PN (72%) - (HP) 12

where the factor N in the expression arises from the appropiate normalization of the tem-
perature. Also in these cases we plot the results for the GB approximation and, for the case
of the periodic model, we also plot the high-temperature prediction (6). In both cases we
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Figure 3. Specific heat of the periodic model versus temperature. The full curve is the high-
temperature result (6). The broken curve is the GB approximation. Simulation results are for
N =100 (0) and ¥ = 500 (x).
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Figure 4, Specific heat of the open model versus temperature, The full curve is the GB
approximation. Simulation results are for ¥ = 100 {[J) and ¥ = 500 (x).

observe a discontinuous jump of the specific heat. It appears at a temperature TGC ~ 0.45 for
the periodic model and Tg‘ ~ (.2 for the open case. We have to note that this energy and
specific heat in the low-T phase are purely dynamical. Anyway, they satisfy fluctuation—
dissipation theorems like the relation C = 8¢/9T, where C is the specific heat and e is the
internal energy.

We have also measured the magnetization and its associated dissipative quantity (the
magnetic susceptibility) fluctuations. The global magnetization is zero above T and below
this (emperature remains stacked to a certain small non-zero value (of the order of the
standard mean deviation 1 /«/ﬁ ). Valuable information can be obtained from its fluctuations
like the linear susceptibility and the Binder parameter. If P(M) is the probability distribution
of the magnetization, we expect it will be a Gaussian at very large temperatures and become
more and more flattened as the glass transition is approached, We are going to show that this
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reatly is the case and that fluctuations are very large even if we stay at high temperatures.
In other words, the linear susceptibility and the Binder parameter are the variance and the
curtosis of the probability distribution P(M). The linear susceptibility is given by

x = B({M?) - (m)?) (13)
where M is the global magnetization and we recall the fact that one factor N has been

absorbed in the temperature in order to have an appropriate thermodynamic limit. The
Binder parameter [20] is given by

gﬁ%(sﬂm). (14)

(M2
Now we would like to approximately compute this quantity in the high-7" phase above
the glass transition. From (5) we observe that the Hamiltonian is the sum of %N Fourier
components B(p). We can suppose that these Fourier components are, at least, independent
in the high-T phase (in some sense this is the original idea of Golay for resumming the
high-T series). One can soon realize that this approximation has to fail because the total
number of Fourier components is too large (it diverges with N). But this is the easiest
approximation one can do. In order to reach the comrect expression it should be necessary
to solve the low autocorrelation models in a magnetic field. Within this approximation and
using the Hamiltonian (5) we observe that the zero-momentum term |B(0)|* corresponds
to the fourth power of the magnetization. The only difference between the magnetization
and B, is that these last Fourier components are complex while the magnetization is real.
According to (10) the effective probability distribution of the magnetization is given by
P(M) ~exp(—pM* — uM?). (15)
We immediately observe that only at infinite temperature will the probability distribution
be a Gausstan, and at finite B non-Gaussian corrections can be very strong (the same
discussion is valid for any Fourier component B,). This result was observed numerically
by Migliorini studying the local-field distribution [21} in the open model. Using this
approximation and (8) for the periodic model one gets

x=58 (16)

1.2 r

04 r

[ X g%
0 Mg;:?o. PR S S S S S S S |
0 0.4 0.8 1.2 1.6 2

T

Figure 5. Magnetic susceptibility of the pericdic mode] versus temperature, The full curve is
the approximation {16). Simulation results are for &N = 100 (O) and N = 500 (x).
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Figure 6. Magnetic susceptibility of the open miodel versus temperature. Simuoladon resules are
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Figure 7. Binder parameter of the periodic and open models versus temperature. The full curve
is the approximate high-temperature result to the periodic case (17). Data is shown for N = 100
in the periodic model (O) and ¥ = 500 in the apen case (x},

for the linear susceptibility of the periodic model. Figures 5 and 6 show the linear
susceptibility obtained during an annealing process. Figure 5 also shows the prediction (16)
for the periodic model. The values obtained for the glass transition from the discontinuity
of the linear susceptibility agree with those obtained measuring the specific heat (figures 3
and 4).

In the case of the Binder parameter we use (9) which we can obtain in terms of the
internal energy (now one has to be a little bit careful and realize that the integral of the
fourth power of the magnetization, which is a real variable, over the probability distribution
(15)is % times the integral of the fourth power of any complex Fourier component B, over
the effective Hamiltonian (10)). One gets the result

g=2(1-¢). (17)
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We show in figure 7 the behaviour of the Binder parameter associated with the
magnetization for the periodic medel (Monte Carlo results are also shown for the open case).
It is shown up to 7 = 2 (five times the predicted glass temperature of the periodic modei),
For very large temperatures the Binder parameter should vanish because the magnetization
distribution becomes a Gaussian. In our case it decays very slowly to zero, which indicates
that well above the glass temperature fluctuations in the magnetization are large. Also from
fisure 7 we can observe a jump for the Binder parameter at the glass transition to a value
close to I. One comment about the high value of g above Ty is now appropriate. This large
value of the curtosis parameter means that the probability distribution of the magnetization
is far from being a Gaussian. It is a symmetric distribution very flat close to M = 0 and
with possibly two peaks distributed symmetrically. As we will see in the next section, this
result has strong implications for the dynamics. We expect that well above Tg the spin—spin
correlation function (o (#p)o (¢)) decays to zero very quickly but the system can preserve a
certain memory of the configuration at time 5. In fact, if the P(M) is so much flattened
around M = 0, the system can need a very large time to reach configurations completely
uncorrelated from the memorized configuration at #.

Let us summarize the results of this section. Performing annealings, starting from large
ternperatures down to the low-T region, we observe a glass transition where the energy
freezes and fluctuations vanish. This temperature is several times larger than that predicted
by the statics and this is related to the peculiar structure of the high-energy metastable states
which the systems explore during the relaxation. More concretely, we have learned that
the glassy temperature occurs at 7§ = 0.45 for the periodic model and TS = 0.2 for the
open case. In the next section we will confirm these results by studying the off-eguilibrium
dynamics of these models. In particular, aging phenomena will appear as a good method
for determining the glass transition.

4. Aging and the first-order nature of the dynamical transition

As we said in the last section this transition is of first-order nature in the dynamical order
parameter. In principle, the dynamics are described by the two-time correlation functions
C(#1, t2) and the response functions G (), 2). They are defined as usual by

Cn, 1) = {oi(t1)o; (82)} (18}
8{o;
Gy, 1) = %a <1 (19

where {-- ) is the usual time average over diffetent noise realizations in the dynamics and
k() is the magnetic field applied to the system at the time .. We have performed discrete
Monte Carlo dynamics which we expect to give similar results as well as a usual Langevin
dynamical process.

In the high-temperature regime, above the glass transition, we expect that the correlation
and the response functions are related to each other by the fluctuation—dissipation theorem,
Also in this high-T region the correlation and the response functions satisfy the time-
homogeneity hypothesis, ie. the functions C (i, &) and G (¢, £z) only depend on the time
difference #; — 2. Both functions decay very quickly in time.

Below the glass transition the time behaviour of the correlation and response function
change drastically and, for instance, time correlations decay very slowly in time. In this
low-T regime the time-homogeneity hypothesis is lost and strong aging effects start to
appear. Then the decay of the correlation functions depends on the previous history of
the system. More concretely, it depends on the time z, at which the spin configuration is
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memorized (in the case of the correlation functions) or on the time z» at which the magnetic
field is switched off (in the case of the response function).

For reasons of simplicity we have focused our research on the two-time correlation
function (one could also perform aging experiments measuring the remanent magnetization).
In this case we have measured the time-time correlation function between the spins
configuration at the waiting time #, and the configuration at the next time ¢, 4 ¢,

. |
Clewtu+1) = > oilt)oilty +1). (20)
i=1
Above the glass transition temperature we expect time homogeneity to apply (this means
that C{ty, tw--f) only depends on ¢) and time correlation functions should decay very quickly
to zero. The following condition holds:

lim C(ty,2t4)=0. 20
Ly—+ 0O

Just below T the correlation function decays very slowly in time to a finite value ¢;.
This finite value g; is positive and smaller than the static Edwards—Anderson order parameter
at the static transition point. This value ¢y is zero above T and is very close to 1 just
below 75 and increases as the temperature decreases (linearly with T at low temperatures).
We have to call readers attention to the fact that this value is physically related to the
local order parameter associated with the metastable states and this is smaller than the local
overlap associated with the true equilibrium configurations (the static Edwards—Anderson
order parameter). The procedure for determining the value of g has been applied recently to
a particular deterministic model (see 11) and corresponds to the replica order parameter within
the same block as the one-step replica of replica-symmetry breaking, This is evalvated at the
dynamical transition point where the free energy is maximized according to the marginality
condition. More precisely, we can write (for an infinite system)

Jim C(tu,20) =1 (22)

where g; depends on the temperature. For low autocorrelation models we know that the
value of g is very close to 1 {for instance, this is the greatest difference between p-spin
glasses [26] or Potts glasses [27] and low autocorrelation models; the last ones show a very
large discontinuity in the value of g,). Because the value of ¢; jumps from zero above Tg
to a finite value below Tj the transition is of a discontinuous type. Before showing our
dynamical results in the case of low autocorrelation binary sequences we would like to note
that, as regards dynamical experiments, deterministic models are much more suited than
disordered models. Because our mode! is ordered, we do not need to save the realization of
the random couplings. The number of random couplings, in the case of a long-range maodel,
can be very large and this sets a limit on the maximum size one is able to memorize in the
computer. The major part of the numerical results we will show cotrespond to N = 5000
in both models (open as well as in the periodic case).

The existence of aging is one of the most outstanding features of spin glasses [28]. Now
we are going to show that low autocorrelation models also exhibit these phenomena just
below the glass transition. Because the results we have obtained for the periodic and the
open case are very similar, in some cases we will present the results for just the open case.
Figure 8 shows the correlation function (20) for the open model, for different values of the
waiting time above the glass transition T (as estimated in the previous section). The data
in this case corresponds to a temperature T = 0,45. This figure shows that above the glass
transition the aging effects are absent {i.e. the correlation functions do not depend on the



7680 G Migliorini and F Ritort

0.8 -]
&
07 E
3 W
0.6 o a
] * 30
= 05 r a o 100
+ L -]
E 1 * x 300
g 0.4 c o 1000
[+ o3 F . & 3000
02 [ a
: §
0.1 P o g H . "
0 i ‘?bt\gja?g;.?.gr'!.!.i-.
i 10 100 1000 10t

Figure 8. C(2,. ! + 1) for the open model for different values of ., above the glass transition
at T = (.45, The size is N = 5000.
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Figure 9, C(ty, ? -+ &) for the open model for different values of #, below the glass transition
at T = 0.1. The size is ¥ = 5000.

value of 1,). Also, all correlation functions decay very quickly with the time. Surprisingly
(as shown in figure 8) they do not always decay to zero. In some cases, they decay to a
small finite value (for the suspicious reader we will note that this value is larger than the
standard deviation 1/+/N). This means that, well above the glass transition, the system
preserves a small temporal correlation with previous configurations. As discussed in the
previous section, this is strongly related to the non-Gaussian nature of the fluctuations (for
instance, this was shown in the case of the magnetization). This behaviour is far from being
paramagnefic. It is not clear to us what is the real dynamical nature of this high-T region..

As soon as we go below Tg the dynamics slow down dramatically. The system remains
trapped in metastable states and it takes a very long time for the system to overcome the
barriers and explore new configurations. This is seen clearly in the results of figure 9 where
we show the correlation function below the glass transition at T = (.1 for one realization of
the noise for the open model. Aging effacts are presen't and we expect correlation functions
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to depend mainly on the ratio ¢ /4, for large enough values of £,. Some comments are now
in order. As shown in figure 9, the correlation function stays very close to 1 during a time
of the order of 10* Monte Carlo steps for all different waiting times. This is because for
enough low temperatures the system is able to surmount only a few numbers of states and
the shape of the correlation function is strongly dependent on the noise realization. To get
smooth correlation functions one should average over a very large number of trajectories
and this demands a lot of computer time. From these considerations it emerges that a scaling
law of the type

Clty,t +1tw) ~ f(t/tw) (23)

is very difficult to observe in a small number of decades of time. This scaling law has been
obtained by Bouchaud in his phenomenological approach to the off-equilibrium dynamics
[29]. Cugliandolo and Kurchan [15] have shown explicitly that this is indeed a solution of
the off-equilibrium equations in case of the p-spin spherical spin-glass model and the Potis
model [30]. These models do have a spin-glass phase with one step of replica-symmetry
breaking, It is reasonable to suppose that the scaling law (23} also applies in the case of
low autocorrelation models for which a REM-like transition describes the low-T behaviour
well. We should also note that the dynamical behaviour we are observing in these models is
strongly different from the dynamical relaxation of the SK model [31] or short-range Ising
spin glasses [32]. In this case, one does not have a first-order dynamical transition and the
free-energy landscape is not so rough. The system is not trapped in the metastable states
and correlation functions decay to zero smoothly without apparent jumps [19]. When a
strong metastability is present (as in low autocorrelation models) new numerical techniques
like those recently developed by Krauth and Pluchery [23] and Krauth and Mezard [22]
are very useful. If one wants to observe smooth aging over a reasonable time scale, it is
mandatory tc go to higher temperatures. Precisely at the glass temperature we expect that
the system will display nice aging and the scaling law (23) will be satisfied for enough
large sizes. This is shown in figure 10, where we have measured the aging at a temperature
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Figure 10. C(ty, ¢+ 1) for the open mode! for different values of #, close to the glass transition
{Tg ~ 0.19). The inset shows the scaling law (23). The size is N = 10000. The symbols
correspond to different values of #,: 30 (4}, 100 (©), 300 (%), 1000 (A) and 3000 (O).
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Figure 11. C(ty,, 2t,,) for the periodic model for different values of #, = 30, 100, 300 and 1000
as a function of the temperature,

Figure 12. C{#y, 2tw) for the open model for different values of r, = 30, 100, 300, 1000 and
3000 as a function of the temperature,

Ts ~ 0.19 for the open model and a very large size N = 10000. The inset of figure 10
shows the scaling law (23).

Now we want to show how aging allows for a nice confirmation of the first-order
nature of the glass transition, This is one of the main results of this work. Because the
nature of this glass transition is purely dynamical we can use the relations (21) and (22) in
order to find the temperature at which the discontinuity of the order parameter appears. A
similar technique could be used by coupling two replicas, as has been done in case of the
p-spherical spin-glass mode} [33]. Nevertheless, we think that our dynamical technique is
more direct because we do not need the introduction of an extra coupling parameter in the
model.

We have computed the correlation function for different waiting times f, and aiso
different temperatures. Then, for each temperature, we computed C (2, 24y), averaging the
correlation function in a logarithmic scale. We proceeded in this way in order to get smooth
values of the correlation C(ty,27y) as a function of the temperature and the waiting time.
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We have done this numerical analysis for different values of #, = 100, 300 and 1000 in the
pericdic model and ¢, = 100, 300, 1000 and 3000 for the open model. Figures II and 12
show the results for the periodic and open model, respectively. From this data we can clearly
see the discontinuity because the predicted value of ¢y is very close to [ just below Tg.

In order to obtain Tg we have performed 2 ysual finite-time scaling analysis. To this
end we have measured the relaxation curves above the glass transition and also above the
temperature at which finite-size effects are negligible (approximately T = 0.25 for the apen
model and 7 = 0.55 in the periodic case}. Correlation functions decay exponentially and
one can estimate the relaxation time 7 as a function of T'. In this range of temperatures we
expect the correlation time will diverge as a power-law singularity of the type

T~ (T -Tg5)77 (24)

where ¥ is a dynamical exponent. We note that this kind of divergence is also typical of
disordered systems with long- or short-range interactions. In the case of frustrated models
without disorder the situation can be different depending on the range of the interaction.
Low autocorrelation models are of the long-range type. It is possible that for more realistic
models of glasses the dynamics will be much more complex and very different relaxation
behaviours, like the Arthenius or the Vogel-Fulcher law, could take place. Now we want to
observe that usual critical dynamics works well in the case of low autocorrelation models.
This is not surprising if (as we have seen in this work) glasses and spin glasses do have so
much in common [34]. We have fitted the correlation functions in the high-T regime with
a scaling law of the type

c(t) ~ f(t/7) (25)

where 7 is given in (24). The scaling behaviour is shown in figures 13 and 14 for the open
model and the periodic model, respectively. Good fits are obtained with T ~ 0.21£0.02
and ¥ ~ 2% 0.5 for the open model and Tg ~ .43+ 0.2 and y ~ 2 £ 0.5 for the
periodic model. The scaling function f(f/T) is nearly an exponential in both cases. The
exponent y is the equivalent of the product of exponents zv for the usual critical dynamics
and it is certainly much lower than known values in realistic glasses (typically these are of
the order of 10, see [34]). As we have already indicated, low autocorrelation models are
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Figure 13. Finite-time scaling (25} for the periodic case. Good scaling is obtained with
Tg ~ 043+ 002 and y ~ 2.
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Figure 14. Finite-time scaling (25} for the open case. Good scaling is obtained with
Tg~021+002and y ~2.

long-range models. Realistic glasses are not of the long-range type and it could well be
that the exponent y increases as the dimensionality decreases. This happens in the case of
Ising spin glasses where the product zv ranges from 2 in mean-field theory to 6 in three
dimensions [35] (in the case there is a true phase transition [36]).

5. Conclusions

Low autocorrelation models display a dynamical behaviour very similar to disordered spin
glasses. The reason for this similarity is that these models (and more generally, glasses} do
have a broad distribution of higher free-energy metastable states, as happens in the case of
spin glasses [7].

The feeling which emerges from recent studies by several groups is that deterministic
models display a glassy behaviour of a purely dynamical nature, This glassy behaviour
seems to be associated with spin-glass models with one step of replica-symmetry breaking
[17]. In the case of models with an infinite number of breakings like the 5K model [18] the
situation is different [19].

We have also seen that the open case and the periodic case behave very similarly. We
have studied the relaxation of magnitudes like the internal energy, specific heat and magnetic
susceptibility. More interestingly, the Binder parameter associated with the magnetization
has a non-Gaussian shape even for very large temperatures above the glass transition.
This result should very probably also apply for any other Fourier component B, of the
configuration of the spins.

According to this result we have seen that well above the glass transition the dynamical
correlation functions decay exponentially fast to a small non-zero value. The system is not
fully ergodic because it has some memory about the previous configurations it has visited.
We have given an explanation of this fact but it remains unsolved as to what the real
nature of this high-T phase is. We want to stress that the high-7 phase, not being fully
ergodic, makes the real nature of this dynamical phase transition unclear. It seems purely
first-order but we think it is more complex than the glass transition found in the case of
other deterministic models [2,5] or spin glasses (i.e. models with an exact solution at one



Behaviour of low autocorrelation models 7685

step of replica-symmetry breaking).

Ahove the glass transition temperature finite-time scaling analysis has revealed a good
technique in order to locate the transition and the dynamical exponents. For the open
and periodic models we obtain the equivalent of the product exponents zv of the critical
dynamical theory. Values close to 2 are obtained. Compared with experimental values
obtained in the case of real glasses, these are small, but this could be an artifact of the
long-range interactions of the low autocorrelation models.

We have also investigated the dynamics below the glass transition, where aging
phenomena are present. This is one of the main features in spin glasses. At the glass
transition, where the effect of the traps is not very strong, we have found that the scaling
law (23) is well reproduced.

We conclude by saying that the techniques developed in this work are very general
and should be applicable to a large variety of systems where disorder is not present. In
particular, we think that the behaviour of c(tw.2t,) as a function of temperature is well
suited in order to characterize the transition. It remains to be understood to what extent
the results obtained in this work are generic for real glasses and to what extent short-range
interactions can modify the main conclusions of this work.
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